埃尔米特插值
在节点上与原来的函数相等,且节点上的各阶导数也相等
两点三次埃尔米特插值:
\[
H_3(x)=h_0(x)y_0+h_1(x)y_1+H_0(x)m_0+H_1(x)m_1
\]
其中,\(m_0=f'(x_0), m_1=f'(x_1)\)。
求解: $$ \begin{aligned} h_0(x)=\left(1+2\frac{x-x_0}{x_1-x_0}\right)\left(\frac{x-x_1}{x_0-x_1}\right)^2 \ h_1(x)=\left(1+2\frac{x-x_1}{x_0-x_1}\right)\left(\frac{x-x_0}{x_1-x_0}\right)^2 \ H_0(x)=(x-x_0)\left(\frac{x-x_1}{x_0-x_1}\right)^2 \ H_1(x)=(x-x_1)\left(\frac{x-x_0}{x_1-x_0}\right)^2 \end{aligned} $$
余项定理:

例题5:【2023真题回忆版】 给定以下数据:
| \(x_k\) | 1 | 2 |
|---|---|---|
| \(f(x_k)\) | 3 | 4 |
| \(f'(x_k)\) | 0 | 1 |
试用基函数法构造埃尔米特插值多项式\(H_3(x)并计算f(1.5)\)
解: 由基函数公式:
\[
\begin{aligned}
h_0(x)&=(1+2\frac{x-x_0}{x_1-x_0})(\frac{x-x_1}{x_0-x_1})^2\\&=(1+2x-2)(x-2)^2=2x^3-9x^2+12x-4 \\
h_1(x)&=(1+2\frac{x-x_1}{x_0-x_1})(\frac{x-x_0}{x_1-x_0})^2\\&=(1-2x+4)(x-1)^2=-2x^3+9x^2-12x+5 \\
H_0(x)&=(x-x_0)(\frac{x-x_1}{x_0-x_1})^2\\&=(x-1)(x-2)^2=x^3-5x^2+8x-4 \\
H_1(x)&=(x-x_1)(\frac{x-x_0}{x_1-x_0})^2\\&=(x-2)(x-1)^2=x^3-4x^2+5x-2
\end{aligned}
\]
所以:\(H_3(x)=h_0(x)y_0+h_1(x)y_1+H_0(x)m_0+H_1(x)m_1=-x^3+5x^2-7x+6\)。
\(f(1.5)=H_3(1.5)=3.375\)